Percutaneous Mitral Valve Repair Devices Beyond MitraClip

A review of devices in development for the percutaneous treatment of mitral regurgitation.

BY JONATHAN MARVIN TOBIS, MD, AND ISLAM ABUDAYYEH, MD, MPH

Mitral regurgitation (MR) is present in 1.7% of the population, 7% of people older than 64 years, and 56% of individuals with congestive heart failure. MR is a major cause of heart failure and disability.1 Severe MR compromises left ventricular function, induces pulmonary hypertension, alters the architecture of the heart, which predisposes the patient to develop atrial fibrillation.2 This article reviews some of the newer methods of percutaneous treatment for MR that are being developed. Although the MitraClip device (Abbott Vascular) has been available in Europe since 2008 and has been used in more than 16,000 cases, this review highlights other devices that are being tested to treat MR, as more than one approach may be useful to percutaneously treat MR in high-risk surgical patients.

ANATOMY AND PHYSIOLOGY

Classification of MR is dependent on whether there is a structural abnormality of the valve leaflets or chordae (called degenerative or primary MR) or if the regurgitation is due to left ventricular dilation producing valve dysfunction (called functional or secondary MR). The most common cause of structural MR is valve prolapse due to myxomatous degeneration and chordal stretching. Functional MR is produced by separation of the valve leaflets due to dilatation of the mitral annulus secondary to left ventricular dysfunction.3 The annulus of the mitral valve is made up of fibrocollagenous tissue, creating an asymmetric opening.4 The annulus is attached to the mitral-aortic fibrous continuity anteriorly and is therefore part of the aortic valve interleaflet triangle between the noncoronary and left coronary cusps. The supporting trigons contain conduction tissue and may be injured during valvular repair or replacement. Significant MR causes volume overload that remodeled the left ventricle, producing a more spherical-shaped ventricle. This change in LV geometry is associated with retraction of the papillary muscles and chordae, which widens the separation of the mitral leaflets, further exacerbating the volume of regurgitation. The posterior annulus of the mitral valve is composed of muscular tissue and is therefore capable of dilating, which produces functional MR.5

ANNULOPLASTY VIA THE CORONARY SINUS

Just as MitraClip is a percutaneous simulation of a surgical technique to reduce MR, there have been several attempts to percutaneously simulate surgical mitral annuloplasty. The coronary sinus and the great cardiac vein parallel the posterior leaflet of the mitral valve and posterior annulus. The

Figure 1. Anatomy of the posterior heart showing the coronary sinus circling around the left atrium and just superior to the mitral annulus and left ventricular inflow (A). CT image of the mitral valve showing the coronary sinus (CS) just lateral and superior to the mitral annulus (B). CT reconstruction of the coronary sinus (arrow) encircling the left atrium (C).
coronary sinus runs approximately 0.5 to 1 cm on the super-
ior atrial side of the mitral valve annulus. A device placed
within the coronary sinus could potentially plicate the
annulus tissue and “cinch” the mitral valve leaflets by pulling
together the tissue just above the mitral annulus to approxi-
mate the mitral leaflets (Figure 1). The circumflex coronary
artery also parallels the annulus of the mitral valve.6 In up
to 27\% of patients, the circumflex or obtuse marginal artery
courses under the vein and could be compromised during
plication of the tissue with coronary sinus annuloplasty.7
Venous access through the right internal jugular vein and
use of the coronary sinus entrance into the right atrium
does, however, afford a lower risk of vascular complications
compared with transseptal or left ventricular approaches.

The Carillon mitral contour system (Cardiac Dimensions
Inc.) is made of a central nitinol ribbon and a distal anchor,
which is positioned in the great cardiac vein near the junc-
tion with the anterior-interventricular vein, and a proximal
anchor, which is positioned at the ostium of the coronary
sinus. The anchor height sizes are determined by measuring
the coronary sinus venous diameter and adjusting for com-
pliance of the venous tissue. Access is achieved with a 9-F
sheath via the right internal jugular vein under ultrasound
and fluoroscopic guidance. The coronary sinus is cannu-
lated, and an angiogram is obtained in the left anteropos-
terior-caudal view to highlight the venous anatomy. Once
the distal anchor is stabilized, the device is pulled by the
external catheter at the entrance to the jugular vein, which
puts tension on the tissues surrounding the coronary sinus.
After the device is pulled 3 to 5 cm, the proximal anchor
is deployed near the ostium of the coronary sinus. After
each anchor is set, a left coronary angiogram is obtained to
ensure that the obtuse marginal artery is not compromised.
As the device pulls on the tissue around the mitral annulus,
the plication of tissue approximates the anterior and poste-
rior mitral leaflets (Figure 2).8 The coronary veins are fragile,
and care must be taken to prevent trauma during the pro-
cedure. The TITAN and AMADEUS studies demonstrated
a reduction in the mitral annulus area and improvement in
symptoms and 6-minute walk, which appeared to improve
over time during the 12-month follow-up. The studies also
met their primary safety endpoint, with a low rate of major
adverse events. There was also improvement in both systolic
and diastolic ventricular dimensions.9

The Monarc percutaneous mitral annuloplasty system
(Edwards Lifesciences) had a similar concept of produc-
ing mitral annulus plication by implanting a device in the
coronary sinus. It also had three sections, including self-
expanding stent anchors and a connecting ribbon. Plication
occurred over 3 months as spacers along the connecting
ribbon dissolved. The preset shape of the nitinol ribbon
contracted, causing the stent anchors to get closer. The
initial results from the EVOLUTION I trial were promis-
ing, but the device had a high rate of bridge fractures. The
EVOLUTION II study had low enrollment rates, and device
production was suspended after several unexpected deaths
occurred.10

**DIRECT PERCUTANEOUS MITRAL VALVE
ANNULOPLASTY**

A different product that addresses MR by approximat-
ing the valve annulus is the Cardioband device (Valtech
Cardio, Ltd.). Through a femoral venous transeptal access,
the device delivers direct sutureless anchors around the
mitral annulus to connect an annuloplasty device. The
implant is adjusted under three-dimensional echocar-
diographic guidance (Figure 3A). The device attempts to
percutaneously reproduce the effects of a surgical annu-
A European multicenter study is currently underway, with more than 40 patients enrolled, to assess the safety and efficacy of the system in patients at high surgical risk.

The Mitralign device (Mitralign, Inc.) also attempts to approximate the effects of surgical annuloplasty. Access is achieved through the femoral artery, and the left ventricle is entered via a retrograde approach across the aortic valve. The catheter is retroflexed toward the mitral annulus. Using a system of wires, two pledgets are delivered through the annulus of the mitral valve. The pledgets are then pulled together, approximating that segment of the annulus (Figure 3B). The procedure may then be repeated on the other side of the annulus to further coapt the leaflets of the valve. The first clinical trial has completed enrollment of 61 patients in Europe.

The Accucinch system (Guided Delivery Systems, Inc.) also uses a retrograde arterial approach to implant a series of adjustable anchors tethered by a cable around the anterior mitral leaflet. The cable is then tightened to cinch the annulus, and the cable is locked. The device is currently being evaluated in Europe.11

RESHAPING THE MITRAL ANNULUS AND VENTRICULAR REMODELING

The QuantumCor system (QuantumCor, Inc.) is a novel device that utilizes thermal injury to cause collagen shrinkage and contraction. Venous access is established, and a transseptal puncture is performed. By use of a loop containing seven electrodes with 14 thermocouples at 2-mm spacing, the area around the annulus is subjected to subablative temperatures with radiofrequency energy (Figure 4A). The loop containing the thermocouples subjects the mitral annulus to thermal injury and shrinkage, creating a smaller diameter (A). The iCoapsys device places a transventricular chord to reshape and shorten the left ventricular dimension (B).
resulting injury is designed to cause the annular collagen to shrink without deforming or injuring the mitral valve leaflets. The procedure can be repeated and does not preclude other mitral interventions at a later date. The device has only been tested in animal models.12

Although the previously mentioned devices seek to reduce MR by percutaneous methods, the iCoapsys device (Myocor, Inc.) addresses the issue of left ventricular remodeling by more invasive but off-pump surgical techniques (Figure 4B). The device aims to reshape the left ventricle by use of a surgically placed transventricular chord. The system is positioned through a thoracotomy and adjusted under echocardiographic guidance to reduce the annular diameter and improve leaflet coaptation. The reshaping is accomplished by approximating the anteroposterior left ventricular dimensions and compressing the mitral annulus.13 The RESTOR-MV study demonstrated improved intraoperative MR comparable to surgical annuloplasty rings and an improved annular dimension with use of the iCoapsys device.14

PERCUTANEOUS MITRAL VALVE IMPLANTS

With significant advances achieved in aortic and pulmonic valve implants, the techniques required to develop an adequate mitral transcatheter solution have rapidly progressed. The technology is not yet mature and is likely 5 to 10 years away from general clinical practice. However, in patients with a previously implanted tissue prosthetic mitral valve or a mitral annuloplasty ring, a currently available transcatheter aortic valve can be placed in the mitral position because the prosthetic annulus provides support to anchor the new valve implant. The currently approved Sapien XT valve (Edwards Lifesciences) has been used to treat surgically implanted prosthetic valves in the United States and has a current indication in Europe for valve-in-valve therapy.15 Without a previous tissue valve or annu-
lloplasty ring, the native mitral valve does not have a rigid separate annulus or conduit into which a valve may be secured. The annulus is also asymmetric, so anchoring and precise positioning, while not interfering with the aortic valve and chordae, becomes challenging.16

Several designs of percutaneous mitral valves are being tested. The first device is the CardiAQ valve (CardiAQ Valve Technologies, Inc.) (Figure 5A). The CardiAQ valve leaflets are made of porcine pericardium and are sutured onto a nitinol self-expanding stent. The valve is then delivered via a transseptal approach. An initial in-human implantation of the device yielded significant improvement in MR and no valvular structural issues, but the patient died at day 3 due to multiorgan failure. The device has received approval in the United States to begin early feasibility testing of the second-generation prosthesis.17

A second device is the Lutter valve (Tendyne Holdings, Inc.) (Figure 5B). The Lutter valve is a fully retrievable porcine pericardial valve that is mounted on a nitinol frame. The prosthesis is available in one inner valve size and is delivered apically into position, with the option of repositioning as needed. Several implantations were performed in Europe as part of a compassionate use protocol, and the device is now being evaluated in an early feasibility study.18

The Tiara valve (Neoasc, Inc.) is composed of bovine pericardial tissue leaflets with a ventricular fabric-covered skirt to prevent paravalvular leak and is mounted on a self-expandable stent (Figure 5C). The valve has tabs for anchoring and is delivered transapically using a 32-F sheathless system. The support stent is D-shaped on the atrial side to avoid left ventricular outflow tract obstruction. Until the device is finally released, it is retrievable and adjustable. Early acute studies in animals yielded a successful implantation rate of 81% and no significant paravalvular leaks. With the success of the acute trials, long-term animal studies are in progress. The device has received a US Food and Drug Administration conditional investigational device exemption and will begin United States and international human feasibility trials this year.19

Finally, there is the Fortis mitral transcatheter heart valve (Edwards Lifesciences), which uses bovine pericardial tissue leaflets on a cloth-covered, self-expanding stent frame. A wide ventricular frame side and cloth are designed to reduce paravalvular leak (Figure 5D). The prosthesis is delivered transapically, and paddles at the base of the valve are used to secure the device to the native mitral valve and stabilize the implant. The first in-human trial began in Europe and Canada in 2014.20

The trial was recently voluntarily suspended, as Edwards Lifesciences declared it has “observed evidence of valve thrombosis” and issues with leaflet mobility.

CONCLUSION

The development of percutaneous devices to treat MR is a continuation of interventional cardiology advancement to reproduce transcatheterly what cardiac surgeons have accomplished with more-invasive techniques. If this can be shown to reduce MR and improve clinical symptoms and hospitalizations for congestive heart failure with a lower risk than open surgery, then this work will represent another major step forward toward enhanced patient care.

Jonathan Marvin Tobis, MD, is Professor of Medicine, Director of Cardiovascular Research, UCLA David Geffen School of Medicine, Division of Cardiology in Los Angeles, California. He has disclosed that he is a proctor for use of the Carillon device manufactured by Cardiac Dimensions, Inc. Dr. Tobis may be reached at (310) 794-4797; jttobis@mednet.ucla.edu.

Islam Abudayyeh, MD, MPH, is Assistant Professor of Medicine, Division of Cardiology, Interventional Cardiology, Loma Linda University Health in Loma Linda, California. He has stated that he has no financial interests related to this article. Dr. Abudayyeh may be reached at (909) 558-8589; iabudayyeh@llu.edu.

3. Tricoci P, O’Connor CM. Secondary mitral and tricuspid regurgitation accompanying left ventricular systolic dysfunction: is it important, and how is it treated? Am Heart J. 2002;144:573.
17. Sandager LG. CardiacProgram update: featuring the world’s first successful transcatheter mitral valve implant (Lactase). Presented at the Transcatheter Therapeutics annual meeting, October 22–26, 2012, Miami, Florida.