The ideal cardiac assist device for the catheterization laboratory provides effective support for both elective high-risk patients, as well as acute or emergent patients, and has a safety and ease-of-use profile appropriate to each procedure setting. For elective high-risk percutaneous coronary interventions (HR PCI), the clinical goals of the ideal device are (1) to maintain stable systemic hemodynamics while avoiding disruptions in cardiac output, clinical challenges to end-organ function, and neurological instabilities that disrupt patient compliance; (2) to provide more time for complex PCI by raising the patient’s ischemic threshold to minimize myocardial cell damage from balloon inflation or coronary dissection; and (3) to provide a prophylactic safety and ease-of-use profile—minimizing complications such as bleeding (arising from large sheaths and the need for full anticoagulation) or embolization to end organs (such as stroke or limb ischemia). In short, it provides a low-risk, simple-to-use “safety net” that ensures its success, improves its outcome, and extends the PCI procedure to a broader range of patients who would otherwise be denied revascularization due to excessive risk either in surgery or the catheterization lab.

In the emergent setting of acute myocardial infarction (AMI), the roles of the ideal assist device to augment systemic hemodynamics and improve the myocardial ischemic environment are also of prime importance. However, unlike the prophylactic role they play in HR PCI for AMI patient care, assist devices are needed to provide prompt therapeutic benefit with the shortest delay possible because clinical outcome in AMI, with or without hemodynamic compromise, is strongly correlated with time to therapy. In AMI, the “time is muscle” paradigm remains, and in the case of hemodynamic shock, there is also a strong relationship between duration of shock and clinical outcome. The clinical goals of the ideal assist device for the AMI patient are (1) to restore and stabilize systemic hemodynamics to reverse the decline of end-organ perfusion, reduce the risk of end-organ failure and break the deadly cycle of cardiogenic shock; (2) to minimize residual infarct size by reducing the level of myocardial ischemia, halting further cell damage, maximizing residual cardiac function and reducing the overall risk of cardiogenic mortality; and (3) to provide an ease-of-use and safety profile consistent with the critical treatment time scenarios and the risk-benefit considerations of emergency care.

The ideal assist device, therefore, spans the needs of both elective and emergent patient settings, provides systemic hemodynamic support and myocardial protection, and is safe and simple to use (Figure 1).

We discuss herein a brief history of cardiac assist technologies in the catheterization lab that have struggled to achieve these goals, and we introduce Impella technology (Abiomed, Inc., Danvers, MA), which is the first cardiac assist technology designed to attain this comprehensive ideal.

THE EVOLUTION OF CARDIAC SUPPORT IN THE CATHETERIZATION LAB

Evolving from Gibbon’s pioneering roller pump-oxy-
PRINCIPLES OF HEMODYNAMICS

genator work in the 1950s, cardiac assist in the catheterization lab (Figure 2) had its origins in the form of extracorporeal membrane oxygenators (ECMO), which were used to support children in respiratory failure. However, because the catheterization lab was predominately a diagnostic venue at this time, there was limited need in this environment for a therapeutic technology.

With the clinical introduction of an intra-aortic balloon pump (IABP) by Kantrowitz in 1968, cardiologists diagnosing and treating patients with acute coronary syndromes began applying IABP therapy in the catheterization lab but usually in concert with the surgeons, largely due to the need for a graft on the femoral artery to prevent limb ischemia. Although gradually accepted, there was little clinical evidence of improved survival or function during shock secondary to AMI. Specifically, studies comparing the safety and effectiveness of the IABP to nonassisted care in patients with AMI reported no improvement in mortality or composite major adverse cardiac and cerebrovascular events (MACCE), yet there was a significant increase in the incidence of stroke and bleeding.

Widespread application of IABP followed the introduction of truly percutaneous systems that employed 8.5- to 9-F sheaths (circa 1975). At the close of the 1970s and with the birth of PCI in the early 1980s, the IABP offered cardiologists a truly percutaneous system that could be employed during an intervention or whenever circulatory support was needed. Although deployment of an IABP is relatively simple and does not require a surgeon for implantation or removal, a steady and reliable electrocardiogram (ECG) and/or pressure signal (to ensure its proper deflation right before the onset of the systolic period) is required due to its placement in the descending aorta. When supporting patients undergoing high-risk PCI or compromised by AMI (which is usually diagnosed by changes in the ECG), the difficulty of maintaining a steady and reliable ECG timing signal adds complexity to IABP use. The safety and effectiveness of an IABP depends on predictable rhythms and is affected when timing signals are compromised. The IABP movement (inflation/deflation) can also interfere with the movement and guidance of the therapeutic catheter and compromise the quality of the intervention.

Although IABP use has been found to augment coronary perfusion, overall myocardial ischemic improvements are limited by the fact that it provides little or no reduction in native ventricular work and myocardial oxygen demand. Furthermore, it should be recognized that the IABP is not an active forward-flow pump; it is a volume displacement device. Therefore, any improvements in forward flow (ie, cardiac output) in the presence of IABP support are accomplished by the native heart itself and have been demonstrated in failing hearts to be only modest improvements of approximately 0.2 L/min. For this reason, it is typical to combine IABP support with the administration of multiple doses of inotropic drugs that induce higher output from the failing native heart to maintain adequate systemic circulation. This pharmacologic induction increases ventricular work and myocardial oxygen demand, further challenging the myocardial ischemic balance and feeding a downward cycle of increased ischemia, heart failure, and ultimately cardiogenic shock. In a study of more than 3,000 patients with postoperative cardiogenic shock, Samuels et al demonstrated a linear relationship between inhospital mortality and the level of inotropic support. They reported a 21% mortality rate for patients on a high dose of a single inotrope, 42% for a high dose of two inotropes, and 80% for a high dose of three inotropes. Therefore, although the IABP gained widespread use in the catheterization lab based on its relative ease of insertion, its lack of hemodynamic impact leading to a reliance on inotropic drug support limited its ability to meet the ideals described previously.

Cardiopulmonary support (CPS) systems were introduced in the 1970s, filling a void between what the IABP could provide in the catheterization lab and what full cardiopulmonary bypass provided in the surgical suite. Essentially, CPS systems were an iteration of ECMO that was mobile, supported percutaneous implantation, and was limited to short durations of use. CPS systems consisted of a mobile pump (either roller type or centrifugal) on a moveable cart containing an oxygenator, a portable oxygen supply, a small heat exchanger, a mobile power supply, and all the needed cannula for rapid percutaneous cannulation. These devices employed a femoral cannulation strategy that drew femoral venous blood into the pump and deposited the newly oxygenated blood volume into the femoral artery. Although this support strategy was more effective at augmenting systemic hemodynamics than the IABP, it had little or no effect on the myocardial ischemic balance, providing no support of coronary perfusion or reduction of ventricular work. Another disadvantage was its safety profile. Even in circuits using heparin-coated tubing, complications remained high and included renal failure requiring dialysis (47%), bacteremia or mediastinitis (23%).
stroke (10%), leg ischemia (70%), oxygenator failure (43%), and pump change (13%). Although CPS allowed longer inflations in the percutaneous transluminal coronary angioplasty era, the vascular complications and the need for frequent transfusion limited widespread use. From the perspective of ease-of-use, some form of vascular repair was typically needed upon completion of the procedure (due to the relatively large cannula size), and use of the CPS system required a perfusionist to be in constant attendance in the catheterization lab and in all other departments. Therefore, despite the fact that this technology was the first to provide a moderate level of hemodynamic support in the catheterization lab, it also fell short of the ideal in a number of ways.

The Hemopump (Medtronic, Inc, Minneapolis, MN), introduced in the late 1980s, was an application of an Archimedes screw, or axial pump, with the motor residing outside the body. The axial pump head was positioned in the left ventricle, and the external motor transferred energy to the pump head through a high-speed, rotating shaft running inside an arterial steering catheter. The Hemopump was attractive to cardiologists because it was implanted via femoral artery access in a nearly percutaneous fashion (although, similar to the early days of the IABP, it was usually in concert with a surgeon due to the need for a graft on the femoral artery to prevent limb ischemia), and it was the first active forward-flow pump that did not require an extracorporeal transit of the blood. Furthermore, the clinical goal of high-risk PCI support was evolving beyond just providing systemic circulatory support during the procedure to an increased emphasis on protecting the heart muscle from the ischemic insult of the PCI procedure itself. The Hemopump, with its direct left ventricular access, theoretically provided a high level of myocardial ischemic protection due to the efficient unloading of left ventricular work (reducing myocardial oxygen demand), while its outflow, which was at or near the aortic root, held promise of also augmenting coronary flow (increasing myocardial oxygen supply). Despite its conceptual advantages over the currently available systems and the coincidence with many of the ideal goals of cardiac assist in the catheterization lab, the Hemopump never reached significant application and fell into disuse in the catheterization lab and market due to design flaws (mostly related to the long high-speed rotating drive shaft) that limited its reliability in clinical practice.

More than a decade after the introduction of the Hemopump, the TandemHeart (Cardiac Assist, Inc., Pittsburgh, PA) received United States clearance in 2003 as an evolution of the CPS portable assist system. In this iteration of percutaneous cardiac support, the oxygenator was removed in favor of a cannulation method that facilitated pumping blood oxygenated by the patient’s own lungs. The cannulation strategy drew blood from the left atrium (via femoral vein access and transseptal puncture) and returned blood to the femoral artery in a retrograde fashion. Therefore, similar to CPS or ECMO systems, this assist strategy, while providing moderate systemic hemodynamic support, offered little myocardial ischemic protection because its femoral artery outflow provided no support to the coronary circulation, and its atrial cannulation limited left-heart unloading (ventricular work reduction). Furthermore, due to the significant fraction of blood that remained in the left ventricle, sustained left heart ejection was necessary to avoid left ventricular distension. Other limitations were that the large 21-F cannula size led to frequent peripheral vascular compromise, there was a residual potential for a left-right shunt due to the transseptal approach, and atrial cannulation, which has a higher risk of wall suction disruptions compared to a direct ventricular approach, limited forward flow through the pump circuit. Although introduced as a 2.5-L/min device and later modified as a 5-L/min device, Kar et al reported clinical pump flow rates of 2 to 3 L/min in a five-patient high-risk PCI group, and Thiele et al reported flow rates ranging from 2.4 to 3.9 L/min depending on the outflow cannula used (either single 15–17 F or dual 12 F). Trials comparing the IABP to the TandemHeart for cardiogenic shock showed no difference in clinical outcome, but patients with the TandemHeart had many more complications, such as bleeding, transfusions, and limb ischemia sometimes requiring device extraction. Finally, the complexity of the cannulation, the transseptal technique, and the need for full anticoagulation limited its use to the most experienced staff and was associated with long implantation times.

Development of cardiac assist in the catheterization lab has, therefore, progressed through a number of iterations during the last 50 years. With each generation, the technol-
ogy has struggled with the challenges of becoming either easy to implant, safer for the patient, and/or more effective in providing circulatory support and myocardial protection.

The Impella technology is the latest generation of cardiac assist and represents a significant step in the history of technology development described previously. Its design facilitates a support strategy that represents the ideal of cardiac assist—safe and simple use consistent with both elective and emergent clinical environments, while supporting systemic hemodynamics and protecting the myocardium from ischemic damage (Figure 3). Impella’s safety and simplicity is provided by its percutaneous placement combined with an independence from both physiologic timing signals and the consistent need for supplemental inotropic drug support. Its hemodynamic support results from the design feature that provides active forward flow and its ability to address the needs for myocardial protection stems from simultaneously unloading work from the ventricle (decreasing myocardial oxygen demand) and augmenting coronary flow (increasing oxygen supply).

We provide a brief description of the Impella technology, review its experience with regard to clinical usability and patient safety, discuss its fundamental principles of action, and review the scientific and clinical investigations that have demonstrated these principles.

DEVICE DESCRIPTION

The Impella 2.5 is a catheter-mounted microaxial flow pump capable of pumping up to 2.5 L/min of blood from the left ventricle, across the aortic valve, and into the aortic root. The cannula portion of the device, which sits across the aortic valve, is contiguous to the integrated motor that comprises the largest-diameter section of the catheter (12 F) (Figure 4). The small diameter of the cannula is designed to allow easy coaptation of the aortic valve leaflets around it, resulting in the lack of aortic valve insufficiency. A repositioning device allows removal of the introducer sheath after placement, leaving the modest 9-F catheter at the arterial access site.

The Impella catheter is powered and controlled by the Impella console (Figure 5), which is also used for the entire family of Impella devices, both existing and in development. An infusion pump controls a purge system designed to keep blood from entering the motor compartment by creating a pressure barrier against the blood that the device is exposed to. Future controllers will incorporate the purge function into the console itself. Unlike the IABP, the device control does not require synchronization with ventricular activity. There is no need for timing of the device cycle and no need for ECG or pressure triggering. ECG signal deterioration typically seen in sick patients, such as those with atrial tachycardia, S-T segment changes, fibrillation, or intractable arrhythmia, does not compromise device function and efficacy, as it frequently can with the IABP.

Impella 2.5 has been available for general use in the

TABLE 1. SAFETY AND EASE-OF-USE CHARACTERISTICS OF CARDIAC ASSIST DEVICES

<table>
<thead>
<tr>
<th></th>
<th>ECMO/CPS</th>
<th>TandemHeart</th>
<th>IABP</th>
<th>Impella 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular surgery required</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Vascular access points</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Single</td>
<td>Single</td>
</tr>
<tr>
<td>Catheter/cannula size</td>
<td>20–28 F</td>
<td>17–21 F</td>
<td>7–8 F</td>
<td>9 F</td>
</tr>
<tr>
<td>Cardiac wall puncture</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Inotropic drug dependency</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Physiologic timing</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
United States since June 2008 and is available in more than 40 countries, including Europe and Canada. The Impella 5-L/min devices (Impella 5.0 and Left Direct [LD]) have been cleared for general use in the United States since April 2009. The entire family of Impella products has been CE Mark approved and approved by Health Canada. The Impella 2.5 duration of support specified under the CE Mark is 5 days. In parallel to its general-use clearance in the United States (which is for partial circulatory up to 6 hours), the Impella 2.5 is also the subject of a number of ongoing clinical trials (involving up to 5 days of support).

DEVICE INSERTION

Impella 2.5 is inserted using a modified monorail technique under direct fluoroscopic control. Impella uses both a pressure lumen adjacent to the motor, as well as motor current monitoring to give positioning verification to the operator. The device is placed using fluoroscopic control to avoid kinking the catheter and compromising the purge lumen. Transesophageal echocardiography is used as an adjunct only and is useful to confirm device position. After arterial access is achieved, the 13-F peel-away sheath is positioned. A coronary guiding catheter (typically JR-4) and, subsequently, an 0.018-inch guidewire are placed across the aortic valve into the left ventricle. Once the guidewire is across the aortic valve, the guiding catheter is removed, and the Impella catheter is threaded onto the wire. Several guidewires have been certified by Abiomed for use with the Impella system (see Abiomed Impella Instructions for Use and Technical Bulletin 9 for details). With the device positioned in the ventricle (Figure 6), the wire is removed, and the performance level on the Impella console is started at its minimum setting (just enough to counteract physiological forces and stabilize the device position).

SAFETY AND USE PROFILE

The safety and ease-of-use of Impella technology is found on three principles. The first is its size. Impella’s 12-F pump head and 9-F catheter enable percutaneous placement with a single vascular access point, requiring no cardiac wall puncture and imparting no damage to the aortic valve. In short, its size and implantation methods are designed to

<table>
<thead>
<tr>
<th>Study</th>
<th>Device</th>
<th>N</th>
<th>Aortic Regurgitation</th>
<th>Valve/Ischemia</th>
<th>Limb Ischemia</th>
<th>Device-Related Bleeding</th>
<th>Intrasupport Modality</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR PCI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burzotta et al (2008)</td>
<td>2.5</td>
<td>10</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Dixon et al (2009)</td>
<td>2.5</td>
<td>20</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Henriques et al (2006)</td>
<td>2.5</td>
<td>19</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>6%</td>
<td>0%</td>
</tr>
<tr>
<td>AMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seyfarth et al (2008)</td>
<td>2.5</td>
<td>13</td>
<td>0%</td>
<td>0%</td>
<td>8%</td>
<td>0%</td>
<td>23%a</td>
</tr>
<tr>
<td>Sjauw et al (2008)</td>
<td>2.5</td>
<td>10</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%b</td>
</tr>
</tbody>
</table>

aCardiogenic shock patients.
bAfter implementing adjusted heparin protocol.
facilitate reduced complications relative to its predecessor technologies. Second, Impella is an active flow pump that, unlike the IABP, provides hemodynamic support without the need for inotropic drug support and its associated mortality risks. Third, Impella provides support independent of the need for ECG or pressure waveform synchronization, limiting the overall complexity of the set-up and support maintenance. Table 1 summarizes these safety and ease-of-use advantages relative to competing technologies.

Impella implantation time compared to the IABP has been reported by Seyfarth. Figure 7 summarizes these results. In this cardiogenic shock patient population, IABP implantation times range from 6 to 22 minutes, with a mean of 14 minutes. Impella implantation times were reported to range from 14 to 31 minutes, with a mean of 22 minutes, with no statistical difference between the mean implantation times ($P = .4$). It is also noteworthy that this investigation represented early experience with Impella implantation.

Several studies have reported an extremely low incidence of failure to implant or achieve support, as well as a very low incidence of complications, including groin issues, hemolysis, or any evidence of acute or chronic complications relating to the aortic valve or aortic insufficiency. Table 2 summarizes reported adverse event rates for Impella 2.5 in five key studies spanning both HR PCI and AMI patients.

FUNDAMENTAL PRINCIPLES OF ACTION

In addition to the safety and ease-of-use aspects described previously, Impella is designed to address the other two ideals of cardiac assist—hemodynamic support and myocardial protection.

The innate ability of Impella to simultaneously provide systemic hemodynamic support and myocardial protection is based on its fundamental principles of support. In short, Impella is designed to replicate the natural function of the heart—moving blood from the ventricle, through the aortic valve, and into the aortic root. For the heart, this flow

<table>
<thead>
<tr>
<th>Impella Study</th>
<th>Systemic Hemodynamic Support</th>
<th>Myocardial Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauren et al (2007)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Valgimigli et al (2005)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Remmelink et al (2007)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dixon et al (2009)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
path is essential to accomplishing its native function because blood flow is conveyed from the aortic root to the systemic circulation through the ascending aorta, and to the myocardial circulation through the coronary ostia. Because Impella’s flow path mimics this natural direction of forward flow, it too conveys blood flow to the systemic and coronary circulation.

With the outflow of the Impella device in the aortic root, it provides both an active flow and systemic pressure (AOP) contribution leading to increased cardiac power output (Figure 8). Furthermore, with the inflow of the device drawing blood directly from the ventricle, it reduces ventricular end-diastolic volume and pressure (EDV, EDP). Reducing EDV and EDP leads to a reduction of mechanical work and myocardial wall tension, both of which reduce myocardial oxygen demand. Additionally, the increased AOP combined with reduced wall tension leads to increased coronary flow, which increases myocardial oxygen supply. In total, Impella favorably alters the balance of myocardial oxygen demand and supply, improving the muscle’s ability to survive ischemic challenges.

Impella technology is, therefore, the first clinically viable cardiac assist technology to provide this natural forward flow from the ventricle, through the aortic valve, and into the aortic root, simultaneously supporting systemic hemodynamics and protecting the myocardium from ischemic damage (by increasing myocardial oxygen supply and decreasing myocardial oxygen demand). These principles, combined with its established safety profile and ease-of-use, comprise a comprehensive approach to all of the ideals described earlier (Figure 3). We will now discuss these principles in more detail and review the scientific and clinical investigations through which they have been demonstrated (Table 3).

SYSTEMIC HEMODYNAMIC SUPPORT

The hemodynamic support provided by Impella stems from both a flow and pressure augmentation that leads to improved cardiac power output. Beginning with the flow contribution, Impella is an active forward flow pump that is designed to provide up to 2.5 L/min (Impella 2.5) or up to 5 L/min (Impella 5.0 and Impella LD) of flow support. The forward flow achieved clinically is dependent on the pump support level setting (“P” level) and the pressure gradient between the aorta and ventricle that the pump experiences. Higher P level settings or lower pressure gradients result in higher flow augmentation. The relationship between P level setting, pressure, and flow through the Impella 2.5 pump is illustrated in Figure 9.

This active forward flow was measured and reported by Reesink et al and Meyns et al in acute animal models, and by Burzotta et al, Valgimigli et al, and Dixon et al in humans. Valgimigli also reported a total net cardiac output increase associated with Impella 2.5 support of 23%. It is important to clarify, however, that this cardiac output increase was the net effect of (1) a native or true cardiac output reduction (the result of ventricular unloading discussed below) and (2) the forward flow contribution of the Impella pump leading to a systemic observed cardiac output increase (Figure 10).
Furthermore, when properly placed, the outflow of the Impella device resides in the aortic root just above the valve plane (Figure 11A) and provides a sustained augmentation of the diastolic aortic pressure in correlation to the level of Impella support. This systemic pressure augmentation was demonstrated by Remmelink et al,38 who reported a correlation between Impella 2.5 support level and mean AOP (Figure 11B).

MYOCARDIAL PROTECTION

Augmenting Coronary Flow: Increasing O\textsubscript{2} Supply

Flow through any particular coronary artery is dependent on both the pressure gradient across the coronary artery and the vascular resistance. If we assume the venous (distal) pressure and the resistance of the primary artery are fixed, the flow through the coronary artery will be proportional to the ratio of the aortic pressure and the resistance of the microvasculature into which the coronary artery flows (Figure 12).

In addition to the augmentation of the aortic pressure demonstrated by Remmelink, the Impella-induced reduction of the left ventricular volume and pressure reduces myocardial wall tension and microvascular resistance. The maximum ventricular wall tension (T) occurs at end diastole and can be estimated using the Law of LaPlace as:

\[
T \propto \frac{EDP \times EDV}{w} \propto \text{Microvascular Resistance}
\]

in which EDP is the end-diastolic pressure, EDV is the end-diastolic volume, and w is the ventricular wall thickness. As Impella draws blood directly from the ventricle, the EDP and EDV are reduced, thereby reducing the maximum wall tension and microvascular resistance. This effect was also demonstrated by Remmelink in patients undergoing increasing levels of Impella support (Figure 13).

It follows that the combination of the increase in AOP and the reduction of microvascular resistance with increasing Impella support levels would lead to a subsequent augmentation of the coronary flow, and this effect has been well demonstrated by a variety of investigators.10,38 Hunziker, using results from a sophisticated hemodynamic simulator model, predicted an increase in diastolic aortic pressure and coronary flow with Impella 2.5 support (personal communication, October 2008). This model was used to compare the predicted pressure and subsequent coronary flow augmentation of the Impella compared to the IABP (Figure 14). The simulation results demonstrated coronary flow augmentation (blue line) from both devices but a more sustained augmentation with Impella throughout the diastolic period (black...
circles). This is attributed to the constant flow of the Impella, which sustains an elevated diastolic pressure. Due to the required deflation of the IABP in late diastole, it provides only a transient pressure increase early in diastole but reverses this augmentation just before systole, lowering the end-diastolic pressure. IABP deflation in late diastole has been postulated to result in late diastolic flow reversal over and above that seen with physiologic normal pulsatile flow. This has been thought to create a coronary or possibly cerebral steal phenomenon, robbing the heart and brain circulation of much-needed blood flow. This effect has been observed in animal models, and Sjauw’s meta-analysis of IABP literature showed evidence of more central nervous system complications in patients treated with IABP therapy.

Hunziker’s predictions were validated in animals by Sauren, who reported a maximum 47% increase in coronary flow with Impella (Impella 5.0 operated at 3.8 L/min) compared to a 13% increase with IABP (Table 4). Finally, Remmelink demonstrated this coronary flow augmentation in Impella patients, reporting a significant correlation between the level of Impella 2.5 support and the hyperemic coronary flow velocity (Figure 15). Additionally, Aqel et al. used Technetium-99m sestamibi myocardial perfusion imaging to demonstrate the effects of Impella support on the microcirculation (Figure 16). In this case study of a patient with triple-vessel disease, prophylactic Impella support was used during PCI of the primary left anterior descending artery stenosis. Secondary stenoses remained untreated. Technetium-99m sestamibi
perfusion imaging was performed after revascularization while remaining on Impella support (Figure 16A), and then again after removal of the Impella device (Figure 16B).

Comparison of these images illuminates an area of focal hypoperfusion after removal of the Impella that had remained adequately perfused while on Impella support. One explanation of this is that Impella support augmented the blood flow through the collateral pathways supplying this area of the myocardium. This explanation is consistent with the observations of the Remmelink study that reported increased intracoronary pressure and decreased microvascular resistance while on Impella support, both of which will result in increased collateral circulation.

Ventricular Unloading: Decreasing O₂ Demand

Ventricular unloading is often characterized by the PV loop (Figure 17). The PV loop depicts the dynamics of the ventricular pressure and volume during one complete cardiac cycle. At point A, the heart begins its contraction, and pressure builds up rapidly prior to any change in volume. At point B, the aortic valve opens, and a volume of blood is ejected into the ascending aorta. Beyond point B, the pressure continues to build to its maximum until, at point C, the aortic valve closes, and the pressure falls rapidly to point D, where the mitral valve opens, and the chamber begins filling with a new volume of blood for the next heart cycle.

The PV loop is bounded below by the end-diastolic pressure-volume relationship curve and on top by the end-systolic pressure-volume relationship curve. Because one expression of mechanical work is the product of pressure and volume, the area circumscribed by the PV loop is equal to the mechanical work (sometimes called the “external” work) of the heart during each cycle.

There are a variety of ways to affect the PV loop depending on what type of treatment or assist device is applied (Figure 18). Inotropic drugs, for example, have the effect of shifting the end-systolic pressure-volume relationship up, thereby increasing the peak pressure and stroke volume. This increases the area of the PV loop and increases the overall work of the muscle. An IABP has the effect of reducing the pressure at which the aortic valve opens (point B on the PV loop), also known as the afterload, but that often comes with an increased overall stroke volume. This offsets the pressure reduction, leaving little or no change in the overall area of the PV loop. Note also that due to their limited improvement in cardiac output, IABPs are most often used in conjunction with inotropic drugs, offsetting any IABP-induced reduction in afterload with the significant increase in mechanical work caused by the inotropes. Active unloading devices, such as traditional ventricular-assist devices and Impella, pull blood from the ventricle, which reduces the overall filling volume and pressure. According to the Frank-Starling curve, this reduction in filling volume and pressure leads to a reduction in stroke volume (if the heart fills less, it expands less and reduces its subsequent stroke output). In terms of the PV loop, this is expressed as a reduction in its overall area, corresponding to a reduction in its mechanical work, and is one aspect of unloading.

The ultimate goal of unloading with an assist device is to reduce the inherent oxygen demand of the myocardium. Reducing oxygen demand places the muscle in a more protective state in the event of an ischemic insult (eg, AMI, PCI, coronary dissection). The amount of mechanical or kinetic work the muscle produces is one component that determines its oxygen demand but, as discussed by a number of
an additional determiner of myocardial oxygen demand is the amount of potential energy in the myocardium. The myocardial potential energy is related to the amount of wall tension that is present in the muscle, which has been shown to be highly correlated with myocardial oxygen demand. As discussed previously, maximum wall tension is related to the EDP and EDV through the Law of Laplace, and reductions in these parameters lead to reduced microvascular resistance and increased myocardial perfusion. It is important to note that in addition to this perfusion effect (increasing myocardial oxygen supply), Impella-induced reductions in EDP, EDV, and wall tension (T) lead to reduced myocardial oxygen demand.

The EDP and EDV, which comprise point A on the PV loop (Figure 17), are significant determiners of the myocardial oxygen balance because, through their relationship to wall tension, they impact both sides of the demand-supply equation.

Myocardial oxygen demand has, therefore, two components: mechanical work and potential energy (wall tension). One analogy is the difference between flexing the arm at the elbow and holding the arm steady but extended from the body for a sustained period of time. In the flexing experiment, the bicep is producing mechanical energy (work), which drives muscular oxygen demand. In the static experiment, the deltoid muscle (among others) is flexed (under tension) and storing potential energy, which also drives oxygen demand even though no kinetic work is being done. In the case of the heart, the more the myocardium stretches during the heart cycle, the more tension it stores within, and the more oxygen it requires to achieve these volumes. Therefore, the total oxygen demand of the myocardium is proportional to the sum of the MW and the stored PE.

Bringing the discussion back to the PV loop, the MW is simply the area inside the loop, and the PE can be characterized by the area to the left of the loop bounded by the end-systolic pressure-volume relationship and end-systolic pressure-volume relationship (Figure 19A). Conceptually, the sum of the MW and PE is known as the pressure volume area (PVA) and is proportional to the total myocardial oxygen demand. In order to practically estimate the sum of these areas, Sauren and others have employed a simple expression of the PVA as a method of characterizing the total oxygen demand based on simple hemodynamic points on the PV loop:

$$T \propto \frac{EDP \times EDV}{w} \propto \text{Myocardial Oxygen Demand.}$$

The EDP and EDV, which comprise point A on the PV loop, are significant determiners of the myocardial oxygen balance because, through their relationship to wall tension, they impact both sides of the demand-supply equation.

Myocardial oxygen demand has, therefore, two components: mechanical work and potential energy (wall tension). One analogy is the difference between flexing the arm at the elbow and holding the arm steady but extended from the body for a sustained period of time. In the flexing experiment, the bicep is producing mechanical energy (work), which drives muscular oxygen demand. In the static experiment, the deltoid muscle (among others) is flexed (under tension) and storing potential energy, which also drives oxygen demand even though no kinetic work is being done. In the case of the heart, the more the myocardium stretches during the heart cycle, the more tension it stores within, and the more oxygen it requires to achieve these volumes. Therefore, the total oxygen demand of the myocardium is proportional to the sum of the MW and the stored PE.

Bringing the discussion back to the PV loop, the MW is simply the area inside the loop, and the PE can be characterized by the area to the left of the loop bounded by the end-systolic pressure-volume relationship and end-systolic pressure-volume relationship (Figure 19A). Conceptually, the sum of the MW and PE is known as the pressure volume area (PVA) and is proportional to the total myocardial oxygen demand. In order to practically estimate the sum of these areas, Sauren and others have employed a simple expression of the PVA as a method of characterizing the total oxygen demand based on simple hemodynamic points on the PV loop:

$$PVA = MW + PE$$

with

$$MW = (ESV - EDV) \times (P_{peak} - EDP)$$

and

$$PE = 0.5 \times ESV \times (P_{peak} - EDP),$$

in which ESV is the end-systolic volume and P_{peak} is the maximum pressure. A depiction of this practical estimate of the PVA in the context of the PV loop is shown in Figure 19B.

In summary, ventricular unloading is ultimately about
reducing myocardial oxygen demand. It is possible to characterize the oxygen demand of the myocardium in terms of hemodynamic variables, and the PV loop provides a convenient expression of hemodynamics. In particular, the position of the PV loop in the pressure-volume space, as well as the area circumscribed by it, correlates well with myocardial oxygen demand, and the unloading impact of a cardiac assist device is expressed in the PV loop by a leftward shift in its position and an overall reduction in its area.

This effect (leftward shift in its position and overall reduction in its area) was demonstrated (Figure 20) by Sauren et al. in an acute animal model that compared the hemodynamic impact of Impella (Impella 5.0) and an IABP. They reported a significant reduction from baseline (ie, no support) in both ventricular work and end-diastolic pressure-volume with Impella. Changes in these same parameters with the IABP were not found to be significant. Note that in the Impella 5.0 data in Figure 20 (right panel), an Impella support level of “5” is approximately equivalent to the maximum support level of the Impella 2.5 device. Valgimigli et al. also observed similar Impella-induced changes in the PV loop in a single-patient experience report. It is important to note that although some investigators have also reported on the combined hemodynamic impact of the simultaneous use of the Impella and the IABP, this practice is not recommended due to uncertainties in device interactions that have yet to be characterized.

CLINICAL EXPERIENCE

The first clinical activity in the United States with Impella 2.5 was in the context of the PROTECT I clinical trial. PROTECT I (20 patients) established the safety and feasibility of Impella 2.5 for a high-risk PCI patient population and was completed in 2007. Before PROTECT I, there was already extensive use of Impella in Europe. In addition to use in the context of clinical trials in the United States, Impella 2.5 was granted Food and Drug Administration clearance under 510(k) in June 2008 for up to 6 hours of partial circulatory support. Since this clearance, more than 300 institutions have adopted the Impella...
2.5, and it has been used to support more than 1,000 patients. Thus far, physicians have decided to treat the high-risk PCI population (64% of Impella general use), followed by hemodynamically unstable AMI patients (16% of Impella general use). Other patient groups that physicians have decided (on a case-by-case basis) could potentially benefit from the Impella include cardiomyopathy with acute decompensation, postcardiotomy shock, off-pump coronary artery bypass graft surgery, transplant rejection, and support for high-risk electrophysiology (EP) ablation procedures.

Outside of the catheterization lab, the surgical experience with Impella has predominantly been in Europe and Canada, and has mostly involved the Impella 5.0 and LD (5-L devices). The Impella 5.0 devices were granted 510(k) clearance in the United States in April 2009. Before this clearance, North American surgeons had been using the Impella 2.5 device in greater numbers than their European counterparts. These applications have also been encouraging and are similar to the Canadian experience recently reported by Cheung. As with all devices, partial circulatory support (< 5.0 L/min) must be escalated to full-support and/or biventricular devices should the clinical situation warrant. Guidelines for monitoring adequacy of circulatory support include freedom from large-dose inotropic administration, maintenance of normal acid-base status (lactate levels), evidence of continued systemic end-organ function, and overall survival.

With the success of the PROTECT I trial in the United States, two pivotal trials have been initiated and are ongoing in parallel with Impella general use under the 510(k) clearance. PROTECT II and RECOVER II are randomized studies comparing Impella 2.5 to IABP in high-risk PCI and in AMI with hemodynamic compromise, respectively. Note that favorable reimbursement exists for hospitals using Impella, and both clinical trials receive reimbursement as class II-B trials. An additional study in Europe is evaluating Impella in post-MI patients compared to IABP treatment (IMPRESS in STEMI).

CONCLUSION

Impella 2.5 is now available for widespread general use outside of the ongoing clinical trials and is being applied by treating physicians with growing frequency in high-risk PCI, AMI, and other patient groups. It is the first catheter-based therapy of its kind available to cardiologists and has been well established in the literature to be hemodynamically superior to the IABP. Within the landscape of circulatory support, it is the only available device designed to safely and effectively support the natural transport of blood from the ventricle through the aortic valve to the aortic root, simultaneously improving systemic cardiac output, augmenting coronary flow (increasing myocardial oxygen supply), and unloading ventricular work (reducing myocardial oxygen consumption). Along with an established safety profile of low adverse events and independence from the detrimental effects of supplemental inotropic drugs, as well as an ease-of-use profile appropriate for both elective and emergent patient settings, Impella addresses the ideal criteria for circulatory support in the catheterization lab. In the high-risk PCI study (PROTECT II), Impella support is expected to demonstrate the ability to provide stable hemodynamics during significant ischemic challenges, allow more time for balloon inflation and stent placement, and extend PCI therapy to patients who would otherwise be denied revascularization due to excessive surgical risk relative to existing treatment modes. In the AMI patient population, RECOVER II is expected to demonstrate the ability to restore stable hemodynamics, reduce infarct size to improve residual cardiac function, and reduce overall mortality from cardiogenic shock relative to existing treatment modes. In short, these randomized clinical trials are designed to demonstrate how the established hemodynamic superiority of Impella over the IABP translates to favorable outcomes in high-risk PCI and AMI patient populations.

David M. Weber, PhD, is with Abiomed Inc. in Danvers, Massachusetts. He has disclosed that he is a salaried employee and owner/shareholder of Abiomed. Dr. Weber may be reached at (978) 646-1806; dweber@abiomed.com.
Daniel H. Raess, MD, FACC, FACS, is with Abiomed Inc. in
PRINCIPLES OF HEMODYNAMICS

Danvers, Massachusetts. He has disclosed that he is a salaried employee of Abiomed. Dr. Raess may be reached at (978) 646-1703; draess@abiomed.com.

José PS. Henriques, MD, PhD, is with Academic Medical Center in Amsterdam, the Netherlands. He has disclosed that he receives research funding from Abiomed. Dr. Henriques may be reached at +31 20 5664503; j.phen-riques@amc.uva.nl.

Thorsten Siess, PhD, is with Abiomed Inc. in Aachen, Germany. He has disclosed that he is a salaried employee and owner/shareholder of Abiomed. Dr. Siess may be reached at +49 241 88 60 110; tsiess@abiomed.com.